Forumda yenilikler devam etmektedir , çalışmalara devam ettiğimiz kısa süre içerisinde güzel bir görünüme sahip olduk daha iyisi için lütfen çalışmaların bitmesini bekleyiniz. Tıkla ve Git
x

ASUS Sunucular, Yapay Zekâ Performansında 26 Adet MLPerf Inference v2.0 ile Rekor Kırdı

ASUS Sunucular, Yapay Zekâ Performansında 26 Adet MLPerf Inference v2.0 ile Rekor Kırdı
0
239

dagcı

FD Üye
Katılım
Ocak 9, 2022
Mesajlar
38,225
Etkileşim
3
Puan
38
Yaş
68
F-D Coin
66
ASUS-ESC8000A-E11-8-PCIe-GPU-server.jpg

ASUS, geçtiğimiz Aralık ayında katıldığı MLCommons Association bünyesinde birinci sonuçlarını yayınladı. Şirket, çok sayıda testte yeni performans rekorlarına imza attı.

Özellikle en son MLPerf Inference 2.0 testlerinde ASUS, kapalı bilgi merkezi kategorisindeki altı farklı yapay zeka çıkarım misyonunda birebir GPU yapılandırmasına sahip öbür tüm sunucuları geride bırakarak 26 adet rekor kırdı. Bu rekorların 12’si, sekiz adet 80 GB NVIDIA® A100 Tensor Core GPU içeren ASUS ESC8000A-E11 sunucuyla; 14’ü ise dört adet 24 GB NVIDIA A30 Tensor Core GPU içeren ASUS ESC4000A-E11 sunucuyla kırıldı.

ASUS-Sunucular-Yapay-Zeka-Performansinda-26-Adet-MLPerf-Inference-v2.0-ile-Rekor-Kirdi.jpeg


Bu çığır açan sonuçlar ASUS sunucularının yapay zeka alanındaki performans liderliğini gözler önüne serdi. ASUS sunucuları, yapay zekadan yararlanmak isteyen kurumlara büyük katkı sağlıyor ve data merkezlerine en uygun performansı sunuyor.

MLPerf Inference 2.0 testi, en sık kullanılan altı yapay zeka çıkarımı iş yükünü kapsıyor. Bunlar ortasında imaj sınıflandırma (ResNet50), obje tespiti (SSD-ResNet34), tıbbi manzara bölümlendirme (3D-Unet), konuşma tanımlama (RNN-T), doğal lisan sürece (BERT) ve tavsiye (DLRM) iş yükleri bulunuyor.

ESC8000A-E11 aşağıdakiler de dahil olmak üzere birçok alanda performans liderliğini elde etti:
  • ResNet50’de bir saniye içinde 298.105
  •  görüntüyü sınıflandırdı
  • SSD-ResNet34’te bir saniye içinde 7.462,06 görüntüde obje tanımladı
  • 3D-UNet’te bir saniye içinde 24,3 tıbbi manzarayı işledi
  • BERT’te bir saniye içinde 26.005,7 soruyu ve karşılığı tamamladı
  • DLRM’de bir saniye içinde 2.363.760 tahmin yaptı
ESC8000A-E11 sonuçları
BölümGörevModelSonuçlarHassaslıkSenaryoBirimler
Kapalı Bilgi MerkeziGörüntü sınıflandırma
[td]ResNet50[/td] [td]210011[/td] [td]99,00[/td] [td]Sunucu[/td] [td]sorgu/s[/td] [tr] [td]298105[/td] [td]Çevrimdışı[/td] [td]örnek/s[/td] [/tr] [tr] [td]Nesne tespiti
(geniş)
[/td] [td]SSD-ResNet34[/td] [td]7096,10[/td] [td]99,00[/td] [td]Sunucu[/td] [td]sorgu/s[/td] [/tr] [tr] [td]7462,06[/td] [td]Çevrimdışı[/td] [td]örnek/s[/td] [/tr] [tr] [td]Tıbbi görüntüleme[/td] [td]3D-UNet[/td] [td]24,3[/td] [td]99,00[/td] [td]Çevrimdışı[/td] [td]örnek/s[/td] [/tr] [tr] [td]24,3[/td] [td]99,90[/td] [td]Çevrimdışı[/td] [td]örnek/s[/td] [/tr] [tr] [td]Konuşmadan metne[/td] [td]RNN-T[/td] [td]94.996,9[/td] [td]99,00[/td] [td]Sunucu[/td] [td]sorgu/s[/td] [/tr] [tr] [td]102.738[/td] [td]Çevrimdışı[/td] [td]örnek/s[/td] [/tr] [tr] [td]Doğal lisan işleme[/td] [td]BERT[/td] [td]23.489,5[/td] [td]99,00[/td] [td]Sunucu[/td] [td]sorgu/s[/td] [/tr] [tr] [td]26.005,7[/td] [td]Çevrimdışı[/td] [td]örnek/s[/td] [/tr] [tr] [td]11.491,3[/td] [td]99,90[/td] [td]Sunucu[/td] [td]sorgu/s[/td] [/tr] [tr] [td]13.168,2[/td] [td]Çevrimdışı[/td] [td]örnek/s[/td] [/tr] [tr] [td]Tavsiye[/td] [td]DLRM[/td] [td]1.601.300[/td] [td]99,00[/td] [td]Sunucu[/td] [td]sorgu/s[/td] [/tr] [tr] [td]2.363.760[/td] [td]Çevrimdışı[/td] [td]örnek/s[/td] [/tr] [tr] [td]1.601.300[/td] [td]99,90[/td] [td]Sunucu[/td] [td]sorgu/s[/td] [/tr] [tr] [td]2.363.760[/td] [td]Çevrimdışı[/td] [td]örnek/s[/td] [/tr]

ESC4000A-E11 aşağıdakiler de dahil olmak üzere birçok alanda performans liderliğini elde etti:
  • ResNet50’de bir saniye içinde 73.814,5
  •  görüntüyü sınıflandırdı
  • SSD-ResNet34’te bir saniye içinde 1.957,18 görüntüde obje tanımladı
  • 3D-UNet’te bir saniye içinde 6,83 tıbbi imgeyi işledi
  • RNNT’te bir saniye içinde 27.299,2 adet konuşma tespit edip dönüştürdü
  • BERT’te bir saniye içinde 6.896,01 soruyu ve karşılığı tamamladı
  • DLRM’de bir saniye içinde 574.371 tahmin yaptı
ESC4000A-E11 sonuçları
BölümGörevModelSonuçlarHassaslıkSenaryoBirimler
Kapalı Bilgi MerkeziGörüntü
sınıflandırma
ResNet5068.19299,00Sunucusorgu/s
73.814,5Çevrimdışıörnek/s
Nesne tespiti
(geniş)
SSD-ResNet341.886,7599,00Sunucusorgu/s
1.957,18Çevrimdışıörnek/s
Tıbbi görüntüleme3D-UNet6,8399,00Çevrimdışıörnek/s
6,8399,90Çevrimdışıörnek/s
Konuşmadan metneRNN-T17.391,499,00Sunucusorgu/s
27.299,2Çevrimdışıörnek/s
Doğal lisan işlemeBERT6.367,9799,00Sunucusorgu/s
6.896,01Çevrimdışıörnek/s
2.917,6699,90Sunucusorgu/s
3.383,03Çevrimdışıörnek/s
TavsiyeDLRM560.15899,00Sunucusorgu/s
574.371Çevrimdışıörnek/s
560.15899,90Sunucusorgu/s
574.371Çevrimdışıörnek/s
NVIDIA sertifikalı 4U ESC8000A-E11 model (sekiz adet 80 GB NVIDIA A100 PCIe Tensor Core GPU ve iki adet AMD EPYC 7763 CPU ile yapılandırılan) sunucuyla elde edilen 12 rekor, bu modelin yapay zeka ve makine tahsili için sunduğu üstün ölçeklendirilebilme kapasitesini ortaya koydu. CPU ve GPU için bağımsız hava tünellerine sahip gelişmiş termal tasarım, hava soğutmalı bilgi merkezlerine son derece verimli bir soğutma tahlili sunuyor.

Pazardaki en kompakt yapılı 2U model olan NVIDIA sertifikalı ESC4000A-E11 (dört adet 24 GB NVIDIA A30 PCIe Tensor Core GPU veiki adet AMD EPYC 7763 CPU ile yapılandırılan) ise MPLerf Inference 2.0’da 14 adet rekora imza attı. Birçok farklı grafik hızlandırıcıyı kullanma imkanı sağlayan ve NVIDIA NVLink yüksek süratli dahili GPU irtibatına takviye veren bu model, azamî yapay zeka performansı sunuyor.
 

Similar threads

ASUS yeni sunucu modellerinin yanında acil servis ve tümör tanısı uygulamaları için kapsamlı yapay zekâ çözümleriyle ilgili başarı hikayelerini de paylaştı. Yapay zekâ uygulamalarına yönelik yüksek taleple beraber, ASUS çözüm ve donanım odaklı bakış açılarına ait sağlam örnek çalışmalar ve...
Cevaplar
0
Görüntüleme
54
Halihazırda sunulan ve yakında kullanıma sunulacak olan modeller ortasında ESC4000A, RS720A-E11 ve RS720-E10 modelleri yer alıyor. NVIDIA sertifikalı bu sistemler sahip oldukları uyumlu donanım dizaynları sayesinde data merkezi ve kurumsal eser kategorilerinde daha geniş kapsamlı uygulamalara...
Cevaplar
0
Görüntüleme
70
Yeni mimari, kasa ve modüler tasarım sayesinde sistemler daha esnek bir yapıya kavuşarak daha geniş ölçeklendirme imkanları sunuyor. Serideki modeller sahi oldukları PCI Express® (PCIe®) 4.0, OCP 3.0 ve BMC üzere teknolojilerle yüksek sunucu performansı veriyor ve daha uygun toplam sahip olma...
Cevaplar
0
Görüntüleme
63
Sunucu sistemleri, sunucu anakartları ve iş istasyonları kategorilerinde lider olan ASUS, tüm sunucu ürün serilerinin AMD 3D V-Cache™ teknolojisine sahip en yeni 3. Nesil AMD EPYC™ işlemcilerine destek verdiğini duyurdu. Bu sayede önemli teknik bilgi işlem iş yüklerini hızlandırmak ve veri...
Cevaplar
0
Görüntüleme
48
ASUS, tüm sunucu ürün serilerinin AMD 3D V-Cache teknolojisine sahip en yeni 3. Nesil AMD EPYC™ işlemcilerine destek verdiğini duyurdu. Bu sayede önemli teknik bilgi işlem iş yüklerini hızlandırmak ve veri merkezlerinde yeniliklerin önünü açmak hedefleniyor. ASUS ayrıca, SPEC.org web sitesinin...
Cevaplar
0
Görüntüleme
93
858,460Konular
981,104Mesajlar
29,527Kullanıcılar
ConsternatedSon üye
Üst Alt